Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 29(2): 250-266.e8, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33434515

RESUMO

Being integral primary producers in diverse ecosystems, microalgal genomes could be mined for ecological insights, but representative genome sequences are lacking for many phyla. We cultured and sequenced 107 microalgae species from 11 different phyla indigenous to varied geographies and climates. This collection was used to resolve genomic differences between saltwater and freshwater microalgae. Freshwater species showed domain-centric ontology enrichment for nuclear and nuclear membrane functions, while saltwater species were enriched in organellar and cellular membrane functions. Further, marine species contained significantly more viral families in their genomes (p = 8e-4). Sequences from Chlorovirus, Coccolithovirus, Pandoravirus, Marseillevirus, Tupanvirus, and other viruses were found integrated into the genomes of algal from marine environments. These viral-origin sequences were found to be expressed and code for a wide variety of functions. Together, this study comprehensively defines the expanse of protein-coding and viral elements in microalgal genomes and posits a unified adaptive strategy for algal halotolerance.


Assuntos
Microalgas/genética , Microalgas/virologia , Proteínas Virais/genética , Vírus/genética , Vírus/isolamento & purificação , Ecossistema , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Vírus/classificação , Sequenciamento Completo do Genoma
2.
PLoS One ; 15(11): e0241889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166324

RESUMO

Raphidocelis subcapitata is one of the most frequently used species for algal growth inhibition tests. Accordingly, many microalgal culture collections worldwide maintain R. subcapitata for distribution to users. All R. subcapitata strains maintained in these collections are derived from the same cultured strain, NIVA-CHL1. However, considering that 61 years have passed since this strain was isolated, we suspected that NIVA-CHL1 in culture collections might have acquired various mutations. In this study, we compared the genome sequences among NIVA-CHL1 from 8 microalgal culture collections and one laboratory in Japan to evaluate the presence of mutations. We found single-nucleotide polymorphisms or indels at 19,576 to 28,212 sites per strain in comparison with the genome sequence of R. subcapitata NIES-35, maintained at the National Institute for Environmental Studies, Tsukuba, Japan. These mutations were detected not only in non-coding but also in coding regions; some of the latter mutations may affect protein function. In growth inhibition test with 3,5-dichlorophenol, EC50 values varied 2.6-fold among the 9 strains. In the ATCC 22662-2 and CCAP 278/4 strains, we also detected a mutation in the gene encoding small-conductance mechanosensitive ion channel, which may lead to protein truncation and loss of function. Growth inhibition test with sodium chloride suggested that osmotic regulation has changed in ATCC 22662-2 and CCAP 278/4 in comparison with NIES-35.


Assuntos
Proteínas de Algas/genética , Clorofíceas/crescimento & desenvolvimento , Clorofíceas/genética , Polimorfismo de Nucleotídeo Único , Cloreto de Sódio/farmacologia , Sequenciamento Completo do Genoma/métodos , Proteínas de Algas/efeitos dos fármacos , Clorofíceas/efeitos dos fármacos , Meios de Cultura/química , Regulação da Expressão Gênica/efeitos dos fármacos , Japão
3.
Biomolecules ; 9(7)2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336821

RESUMO

Biodiesel is an eco-friendly renewable fuel that can be derived from microalgae. Maximization of biomass and lipid productivities are considered the main challenges for algal biodiesel production. Since conventional batch cultures are time-, space-, and reagent-consuming with many restrictions to apply many replicates, microfluidic technology has recently emerged as an alternative low-cost and efficient technology with high throughput repeatability and reproducibility. Different applications of microfluidic devices in algal biotechnology have been reported, including cell identification, sorting, trapping, and metabolic screening. In this work, Chlorella vulgaris was investigated by encapsulating in a simple droplet-based micro-array device at different light intensities of 20, 80, and 200 µmol/m2/s combined with different nitrate concentrations of 17.6, 8.8, and 4.4 mM. The growth results for C. vulgaris within microfluidic device were compared to the conventional batch culture method. In addition, the effect of combined stress of deficiencies in irradiance and nitrogen availability were studied to illustrate their impact on the metabolic profiling of microalgae. The results showed that the most optimum favorable culturing conditions for Chlorella vulgaris growth within the microfluidic channels were 17.6 mM and 80 µmol/m2/s.


Assuntos
Chlorella vulgaris/metabolismo , Dispositivos Lab-On-A-Chip , Biomassa , Biotecnologia/métodos , Cinética , Nitratos/metabolismo
4.
Methods Mol Biol ; 1995: 131-140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148125

RESUMO

Although most algal biofuel research has focused on microalgae, macroalgae are also potential sources of lipid for the production of biodiesel and other liquid fuels. Reliable, accurate methods for assessing the lipid composition of biomass are essential for the development of macroalgae in this area. The conventional methods most commonly used to evaluate lipid composition, such as those of Bligh and Dyer and Folch, do not provide complete extraction of lipids in photosynthetic cells/tissues and therefore do not provide an accurate accounting of lipid production. Here we present a 2-EE lipid extraction protocol, a method which has been demonstrated to be superior to conventional lipid extraction methods for microalgae, adapted for use with macroalgae.


Assuntos
Lipídeos/análise , Alga Marinha/química , Fracionamento Químico/métodos , Cromatografia em Camada Fina/métodos , Etilenoglicóis/química , Lipidômica/métodos , Lipídeos/isolamento & purificação
5.
Proc Natl Acad Sci U S A ; 115(52): E12378-E12387, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30552139

RESUMO

Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed "phototaxis," enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacterium Synechocystis sp. strain PCC 6803, but the rod-shaped Synechococcus elongatus PCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate of S. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe (Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ from Synechocystis Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSe to sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSe controls both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis in Synechocystis.


Assuntos
Fotorreceptores Microbianos/metabolismo , Fototaxia/fisiologia , Synechococcus/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Fotorreceptores Microbianos/química , Synechococcus/fisiologia , Synechocystis/metabolismo
6.
mBio ; 8(4)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811341

RESUMO

The U.S. Culture Collection Network held a meeting to share information about how culture collections are responding to the requirements of the recently enacted Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity (CBD). The meeting included representatives of many culture collections and other biological collections, the U.S. Department of State, U.S. Department of Agriculture, Secretariat of the CBD, interested scientific societies, and collection groups, including Scientific Collections International and the Global Genome Biodiversity Network. The participants learned about the policies of the United States and other countries regarding access to genetic resources, the definition of genetic resources, and the status of historical materials and genetic sequence information. Key topics included what constitutes access and how the CBD Access and Benefit-Sharing Clearing-House can help guide researchers through the process of obtaining Prior Informed Consent on Mutually Agreed Terms. U.S. scientists and their international collaborators are required to follow the regulations of other countries when working with microbes originally isolated outside the United States, and the local regulations required by the Nagoya Protocol vary by the country of origin of the genetic resource. Managers of diverse living collections in the United States described their holdings and their efforts to provide access to genetic resources. This meeting laid the foundation for cooperation in establishing a set of standard operating procedures for U.S. and international culture collections in response to the Nagoya Protocol.


Assuntos
Biodiversidade , Bancos de Espécimes Biológicos , Biotecnologia/legislação & jurisprudência , Microbiologia Ambiental , Agricultura/legislação & jurisprudência , Agricultura/organização & administração , Bancos de Espécimes Biológicos/legislação & jurisprudência , Bancos de Espécimes Biológicos/organização & administração , Biotecnologia/organização & administração , Bases de Dados Genéticas/legislação & jurisprudência , Modelos Genéticos , Estados Unidos , United States Department of Agriculture
7.
Phytopathology ; 106(6): 532-40, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26976729

RESUMO

The U.S. Culture Collection Network was formed in 2012 by a group of culture collection scientists and stakeholders in order to continue the progress established previously through efforts of an ad hoc group. The network is supported by a Research Coordination Network grant from the U.S. National Science Foundation (NSF) and has the goals of promoting interaction among collections, encouraging the adoption of best practices, and protecting endangered or orphaned collections. After prior meetings to discuss best practices, shared data, and synergy with genome programs, the network held a meeting at the U.S. Department of Agriculture (USDA)-Agricultural Research Service (ARS) National Center for Genetic Resources Preservation (NCGRP) in Fort Collins, Colorado in October 2015 specifically to discuss collections that are vulnerable because of changes in funding programs, or are at risk of loss because of retirement or lack of funding. The meeting allowed collection curators who had already backed up their resources at the USDA NCGRP to visit the site, and brought collection owners, managers, and stakeholders together. Eight formal collections have established off-site backups with the USDA-ARS, ensuring that key material will be preserved for future research. All of the collections with backup at the NCGRP are public distributing collections including U.S. NSF-supported genetic stock centers, USDA-ARS collections, and university-supported collections. Facing the retirement of several pioneering researchers, the community discussed the value of preserving personal research collections and agreed that a mechanism to preserve these valuable collections was essential to any future national culture collection system. Additional input from curators of plant and animal collections emphasized that collections of every kind face similar challenges in developing long-range plans for sustainability.


Assuntos
Bactérias/genética , Genômica/organização & administração , Microbiologia/organização & administração , Agricultura , Bactérias/classificação , Bases de Dados Factuais/legislação & jurisprudência , Estados Unidos , United States Department of Agriculture/organização & administração
8.
Appl Environ Microbiol ; 81(17): 5671-4, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092453

RESUMO

The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is "to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind." Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections.


Assuntos
Bactérias/genética , Bases de Dados Factuais/legislação & jurisprudência , Genômica/organização & administração , Microbiologia/organização & administração , Bactérias/classificação , Bactérias/isolamento & purificação , Estados Unidos
9.
Environ Microbiol ; 11(5): 1105-16, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19175667

RESUMO

Bacterial species of the Enterobacteriaceae family produce cellulose and curli fimbriae as extracellular matrix components, and their synthesis is positively regulated by the transcriptional activator CsgD. In this group of bacteria, cellulose biosynthesis is commonly regulated by CsgD via the GGDEF domain protein AdrA, a diguanylate cyclase that produces cyclic-diguanylic acid (c-di-GMP), an allosteric activator of cellulose synthase. In the probiotic Escherichia coli strain Nissle 1917 and its recent clonal isolates, CsgD activates the production of curli fimbriae at 28 degrees C, but neither CsgD nor AdrA is required for the c-di-GMP-dependent biosynthesis of cellulose at 28 degrees C and 37 degrees C. In these strains, the GGDEF domain protein YedQ, a diguanylate cyclase that activates cellulose biosynthesis in certain E. coli strains, is not required for cellulose biosynthesis and it has in fact evolved into a novel protein. Cellulose production in Nissle 1917 is required for adhesion of bacteria to the gastrointestinal epithelial cell line HT-29, to the mouse epithelium in vivo, and for enhanced cytokine production. The role of cellulose in this strain is in contrast to the role of cellulose in the commensal strain E. coli TOB1. Consequently, the role of cellulose in bacterial-host interaction is dependent on the E. coli strain background.


Assuntos
Celulose/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Fósforo-Oxigênio Liases/metabolismo , Transativadores/fisiologia , Sequência de Aminoácidos , Animais , Aderência Bacteriana , Proteínas de Bactérias/biossíntese , Linhagem Celular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Humanos , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...